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Abstract. Most of this paper consists of the derivation of general beam-referenced stage-two spin-correlation
functions for the analysis of top—antitop pair production at the Tevatron, at the Large Hadron Collider,
and/or at an International Linear Collider. However, for the charged-lepton plus jets reaction qq — tt —
(WTb)(W™b) — (ITwb)(W D), there is a simple three-angle spin-correlation function for the determination
of the relative sign of or for the measurement of a possible non-trivial phase between the two dominant
A = —1/2 helicity amplitudes for the ¢t — W*b decay mode. For the CP-conjugate case, there is an

analogous function and tests for ¢ — W ™b decay. These results make use of W-boson longitudinal—-

transverse interference.

1 Introduction:
W -boson longitudinal-transverse interference

In part because of the large top-quark mass [1] and prop-
erties of QCD, W-boson polarimetry is a particularly pow-
erful technique for empirical investigation of the t — Wb
decay mode from top—antitop pair-production data for the
“charged-lepton plus jets” channel [2]. For this channel,
there is the sequential decay t — Wb — (ITv)b, with
t — W~b in which the W~ decays into hadronic jets.
Since the final state is the (I7v) decay product of the W,
there are observable effects from W boson longitudinal—
transverse interference. For instance, a contribution to the
angular-distribution intensity function is the product of
an amplitude in which the W is longitudinally polarized
with the complex-conjugate of an amplitude in which the
W+ is transversely polarized, summed with the complex-
conjugate of this product. The helicity formalism [3]! is a
general method for investigating applications of TW-boson
interference in stage-two spin-correlation functions for de-
scribing the charged-lepton plus jets channel, and for the
di-lepton plus jets channel.

Most of this paper consists of the derivation of general
beam-referenced stage-two spin-correlation functions (BR-
S2SC) [4,5]?3 for the analysis of top—antitop pair produc-
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1 We use the Jacob-Wick phase convention which includes
the phase convention of Rose for the d functions.

2 (lassic theoretical papers on top-antitop spin-correlation
functions and top-quark polarization tests for hadron colliders
can be found in [6].

3 For hadron colliders, next-to-leading-order QCD corrections
for top—antitop physics are reported in [7] Finite decay-width
effects are in [8], electroweak corrections are in [9]. For ee — &t

tion at the Tevatron [1], at the Large Hadron Collider [12],
and/or at an International Linear Collider [13]. However,
as a simple result which illustrates W-boson longitudinal—
transverse interference, for the charged-lepton plus jets
reaction qq — tt — (WHb)(W=b) — (ITwvb)(W~b) we
have found that there is a three-angle spin-correlation func-
tion for
(i) determination of the relative sign of [14,15], or for
(ii) measurement of a possible non-trivial phase between
the two dominant A\, = —1/2 helicity amplitudes for the
t — Wb decay mode [16]. For the C'P-conjugate case,
there is an analogous function and tests for t — W ~b decay.

Tests for non-trivial phases in top-quark decays are
important in searching for possible Tgg violation. Tgg in-
variance will be violated if either
(i) there is a fundamental violation of canonical time-
reversal invariance, and/or
(ii) there are absorptive final-state interactions. For in-
stance, unexpected final-state interactions might be asso-
ciated with additional ¢-quark decay modes. To keep this
assumption of “the absence of final-state interactions” man-
ifest in comparison to a detailed-balance or other direct
test for fundamental time-reversal invariance, we refer to
this as Trg invariance [5,17]. Measurement of a non-zero
primed top-quark decay helicity parameter, such as i’ or w’,
would imply Trg violation; see Appendix B. “Explicit Tgg
violation” will occur [16] if there is an additional complex
coupling 29/{1_ associated with a specific single additional
Lorentz structure, 1 = S, P, S+ P,...

For the sequential decay t — Wb followed by W+ —
[T v, the spherical angles 0,, ¢, specify the [T momentum

production, higher-order QCD corrections are treated in [10].
Electroweak corrections are calculated in [11].
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Fig. 1. In the (¢f)cm frame, the “final coordinate system”
(2,79, 2) for specification of the beam direction by the spherical
angles 64, ¢4. Note that i is the smaller angle between the
Wit and W2~ momenta. For the sequential decay t — Wb
followed by W — ITv, the spherical angles 6., ¢, specify the
1™ momentum in the W, ¥ rest frame when there is first a boost
from the (tt)cm frame to the t1 rest frame, and then a second
boost from the ¢; rest frame to the W1 T rest frame; see Fig. 5
below. The 0° direction for the azimuthal angle ¢, is defined
by the projection of the W2~ momentum direction

in the W, rest frame (see Fig.1) when there is first a
boost from the (tf)cm frame to the t; rest frame, and
then a second boost from the ¢; rest frame to the W;y™
rest frame. The 0° direction for the azimuthal angle ¢, is
defined by the projection of the Wy~ momentum direction.
Correspondingly (see Fig.2) the spherical angles 65, ¢
specify the [T momentum in the W5~ rest frame when
there is first a boost from the (¢t)cy frame to the ¢ rest
frame, and then a second boost from the {5 rest frame
to the W5 ™ rest frame. The 0° direction for the azimuthal
angle ¢y, is defined by the projection of the W; ™ momentum
direction. As shown in Fig. 3, the two angles 6%, 0% describe
the W-boson momenta directions in the first stage of the

1, rest frame

t
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_ t
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z! <€

vt (@)
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Fig. 2. Supplement to Fig.1 to specify the C P-conjugate se-
quential decay # — W ~b followed by W~ — I~ 7. The spherical
angles 0y, ¢p specify the [~ momentum in the Wa™ rest frame
when W1 T rest frame when there is first a boost from the (tt)om
frame to the f5 rest frame, and then a second boost from the
to rest frame to the W5~ rest frame. The 0° direction for the
azimuthal angle ¢ is defined by the projection of the W;™
momentum direction. To better display the other angles, the
values of the angle 1 are different in Figs. 1 and 2

sequential decays of the ¢¢ system, in which t; — Wi thand
to — W5~ b. Throughout this paper, the subscripts “one”
and “two” will be used to distinguish the two sequential-
decay chains.

In the ¢; rest frame, the matrix element for t; — W; Tbis

1
<9§.?¢15)‘W+7)\b|27)\1>

= Dgll/,i)*(d)lv 01,0)A A+, s ),

(1)
where 1 = A+ — Ay in terms of the W1 and b-quark
helicities. Throughout this paper an asterisk will denote
complex conjugation. The final W, momentum is in the
0%, ¢1 direction and the b-quark momentum is in the op-
posite direction. The variable A\; gives the t;-quark’s spin
component quantized along the 2! axis in Fig.3. Upon a
boost back to the (tt)cum, or on one further to the iy rest
frame, A; also specifies the helicity of the ¢;-quark. For the
C P-conjugate process, to — Wy~ b, in the f3 rest frame

- t
1, rest frame Xz

Fig. 3. Summary illustration showing the three angles 6%, 65 and ¢ describing the first stage in the sequential decays of the
tt system in which ¢; — With and 3 — W57 b. In a the b momentum, not shown, is back to back with the Wi . In b the b
momentum, not shown, is back to back with the W>™. From a a boost along the negative 21t axis transforms the kinematics
from the ¢; rest frame to the (tt)cm frame and, if boosted further, to the {2 rest frame shown in b. In this figure, ¢1 of Fig. 4

is shown equal to zero for simplicity of illustration
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the matrix element is

1
<9§7¢27>\W—7>‘b|2a )\2>

= D\ ($2,04,0)

(Aw—,Ap) (2)
with 1 = Ayy— — ;. By an analogous argument, A, is the
t2 helicity.

In terms of the ¢ — Wb helicity amplitudes, the
polarized-partial widths and W-boson—LT-interference
widths are

I(0,0) = [A(0,~1/2)",

I(=1,-1) = |A(-1,-1/2)%, (3)

Iw(0,—1) = I'r(-1,0)
= Re[4(0,-1/2)A(-1,-1/2)"] (4)
= [A(0, =1/2)[|A(=1, =1/2)[ cos AL,

110, —1) = —I7(~1,0)
= Im[A(0, —1/2)A(—1,~1/2)"] (5)
= —|A(0, =1/2)|| A(=1, —1/2)[ sin Br,

where the R, I subscripts denote the real and imaginary
parts which define the W-boson—LT interference. The L
superscript on the I'" ()\W,)\/W)’s has been conveniently
suppressed in (3)—(5) for this is the dominant Ay helicity

channel. By convention, the dominant L superscript [R
superscript] on I'F(Aw, Ay [TR(/\W,)\'W)] will be sup-
pressed in this paper. Note the two important minus-signs
in (5). Here, following the conventions in [5,15,16, 18], we

define the moduli and phases as
AQw, M) = [AQAw, M) exp(i @aw ), (6)

with
ﬂLEQO_L_% — Po,—1» BREQDL% — Po,1- (7)

In terms of the £ — Wb helicity amplitudes,

T(0,0) = [B(0,1/2),
T(1,1) = [B(1,1/2), (8)
Tr(0,1) = Tr(1,0) = Re[B(0,1/2)B(1,1/2)*]
= [B(0,1/2)||B(1,1/2)| cos B, (9)
T1(0,1) = —T4(1,0) = Im[B(0,1/2)B(1,1/2)*]

—|B(0,1/2)[|B(1,1/2)|sin B, (10)

with the moduli and phases defined by

B(Aw, Xp) = [B(Aw, o) exp(i @y, ), (11)

with BR =7, B =9 —Po.—

w\»-l
w\»—A
w\»—A
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In this paper, we consider the production-decay se-
quence

qq, or e€ — tt — (WTb)(W™b) — (12)

At the Tevatron, this is the dominant contribution to tt
production. The contribution from

gg — tt — (WTb)(W™b) —

can be treated analogously. The latter is the dominant con-
tribution at the LHC. The corresponding BR-S2SC func-
tions for it will be reported separately [19].

We assume that the A\, = —1/2 and Ay = 1/2 ampli-
tudes dominate respectively in ¢; and f5 decay. In the SM
and in the case of an additional large tg — by, moment?,
the \, = —1/2 and Ay = 1/2 amplitudes are more than
~ 30 times larger than the A\, = 1/2 and A\ = —1/2 am-
plitudes. The simple three-angle distribution F|, + F|g,
for t; — Wb — (I*v)b involves the angles {65, 0., ¢o}
shown in Figs. 1-3. We have

16m3g* 2m?
= 14 2
f|0 952 ( + s >
.4 ba
I(0,0)sin?6, + I'(—1,—1)sin 0
[ (0,0) + I'(1,1)], (13)
4\/§n4g4 2mf
Flag = = 9s? <1+ s >

x cos 0% sin 0, sin? %a [17(0,0)+I'(1,1)] (14)

4 In the standard model, for the ¢ — Wb decay mode,
the relative phase is 0° between the dominant A(0,—1/2)
and A(—1,—1/2) helicity amplitudes. However, as a conse-
quence of Lorentz invariance, there are four identical inten-
sity ratios, I'r|y,—g1/T'(t = WTb), for the standard model
V — A coupling and for the case of an additional chiral-
tensorial coupling of relative strength Ay = Ew /2 ~ 53 GeV
in gr = gfp+5p = 1 units;

1 9fm+f 2
il aT L pp Ifm+1E 5 L
2 gLy Lt Ty 4 " (ke

=Pr (" +ic""v,),

—pv)vPr

where v” = qw"/Ew, PrL.r = (1 F75). In the case of such
an additional large tg — by chiral weak-transition moment,
there is instead a 180° relative phase between the A(0, —1/2)
and A(—1, —1/2) helicity amplitudes. While the associated on-
shell partial-decay-width I'(t — W b) does differ for these two
Lorentz-invariant couplings [I'sm = 1.55 GeV, Iy = 0.66 GeV],
unlike for top—antitop production at a linear collider, measure-
ments of hadronic single-top production will not directly dis-
tinguish between these two on-shell ¢ — Wb decay couplings
because both the s-channel and t-channel are off-shell single-top
production processes. In contrast with applications in light-
quark and leptonic reactions, large and uncertain dispersion-
theoretic extrapolations will be required in any model indepen-
dent attempt to relate measurements for hadronic single-top
production and t — Wb decay [14].
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X {FR(Oa 71) cos ¢a - FI(O7 71) sin d)a} KRa

where K, R are defined below. -
The analogous three-angle S2SC function Fl, + F|g,

for the C P-conjugate channel o — Wy b — (I")b is a
distribution versus {0%, 0y, ¢}

—  16m3gt (1 N me)
s

Flo = 952
1~ .2 - .4 eb
X 51"(070) sin® 6, + I'(1,1) sin 5}

x[1(0,0) + I'(—1, —1)],
_ _4\/51.5494 <1+me)

sig ™ 9s
t . .2 ab
X cos 0] sin 6, sin E[F(O’O) +I'(—1,-1)]

x {I'r(0,1) cos ¢p + I'1(0,1)sing } KR. (16)

Note the important relative plus sign between I'1(0, 1) and

T'r(0,1) in (16), in contrast to the relative minus-sign for
I7(0,1) and IR(0,1) in (14).

1.1 Structure of three-angle S2SC functions

The “signal” contributions are suppressed by the factor

(17)

or

ﬁ: [F(()?O) — F(—l, _1)]
- [I(0,0) + I'(—1,-1)]

associated with the stage-one part of the sequential-decay
chains, t — W~b,t — W+b. Numerically, R ~ 0.41 in both
the standard model and in the case of an additional large
tr — by chiral weak-transition moment (see footnote 4).
The appearance of the R = (prob Wp) — (prob Wr) factor
is not surprising [4,17] because this is a consequence of the
dynamical assumption that the A\, = —1/2 and \s = 1/2
amplitudes dominate. In the standard model

2 2
r-(1_ 2myy, 14 2myy,
mtz mt2

whether there is or is not a large tg — by moment. For-
tunately my # V2mw = 113GeV, otherwise many W-
boson polarimetry effects would be absent in top-quark
spin-correlation functions. An important exception is the

(18)
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0, dependence of F|, [see (13)]. Both of the R and K sup-
pression factors are absent in purely stage-two W-boson
polarimetry, with or without spin-correlation.

From the 65" dependence of the integrated diagonal el-
ements of the sequential-decay density matrices for to —
Wy™b — (I7D)b, it follows that R’s numerator appears
in F \Sig multiplied by cos6% and that R’s denominator
appears in F|, multiplied by one [see (95) and (96)]. Be-
cause the t-quark has spin %, there are purely half-angle

1
d2, . (0o")-squared intensity-product factors in (95)—(97).
The off-diagonal R,\z AL elements which describe to-helicity
interference do not contribute due to the integration over
the opening angle ¢ between the t; and t5 decay planes. The
angles 0 o are respectively equivalent to the Wl,gi—boson
energies in the (¢7)cm (see Appendix A). In this 3-variable
spin-correlation function, the minus sign in the numerator
of the K suppression factor in F |Sig is a consequence of

the minus sign in the sequential-decay density matrix RZLJF
of (26) in the helicity-flip contribution (92) for the R, +
term, versus the corresponding plus sign in R®"_ of (27)
in the helicity-conserving contribution (72) for the R |
term; and analogously for the R__ terms in (92) and (72).

1.2 Summary

From the top-quark spin-correlation function (13) and (14),
the two tests for t; — W1 Tb decay are as follows.

(i) By measurement of I'g(0, —1), the relative sign of the
two dominant A\, = —1/2 helicity amplitudes can be de-
termined if their relative phase is 0° or 180°. Versus the
partial-decay width I'(t — W), W-boson longitudinal-
transverse interference is a large effect for in the stan-
dard model n;, = w = +0.46 without/with a large
tr — bp, chiral weak-transition moment. In both models,
the probabilities for longitudinal/transverse W-bosons are

large, P(Wr) = 299 — 0.70 and P(Wy) = FEL= =
0.30, and so for a trivial relative-phase difference of 0° or
180%, W-boson longitudinal-transverse interference must
be a large effect.
(ii) By measurement of both I'y(0,—1) and I7(0,—1) via
the ¢, dependence, a possible non-trivial phase can be in-
vestigated. Tests for non-trivial phases in top-quark decays
are important in searching for possible Trg violation.
From (15) and (16), there are the analogous two tests
for 5 — W5~ b decay. In the standard model I'g(0,1) =
I'r(0,—1), and both I'1(0, 1) and I7(0, —1) vanish whether
there is or is not a purely-real tp — by, transition moment.
Section 2 of this paper contains the derivation of general
BR-S2SC functions. For ¢t production by qg, or e¢ — t,
neither C'P invariance nor Trg invariance is assumed for the
T(A1, A2) helicity amplitudes in Sect. 2.2. For informative
details, see [20]. By C'P invariance, T(++) = T(——) but
T(+-) and T(—+) are unrelated. If experiment were to
show that one of the primed production-helicity parameters
(76), (82)— (85) and (94) is non-zero, then Trg invariance
is violated in the g — tt process.
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In Sect. 3, these results are applied to the lepton plus
jets channel of the tf system, assuming that the )\, =
—1/2 and A\; = 1/2 amplitudes dominate. Simple four-
angle spin-correlation functions are obtained, which do not
involve beam referencing. These and other additional-angle
generalizations might be useful empirically, for instance
as checks with respect to the above four tests. Section 4
contains a discussion. The appendices respectively treat
(A) kinematic formulas,

(B) translation between this paper’s I'( Ay, )\W/) notation
and the helicity parameter’s notation of [5,15,16,18],

(C) kinematic formulas for beam referencing versus Figs. 1
and 2, and

(D) formulas for ee — t¢ production.

2 Derivation of beam-referenced stage-two
spin-correlation functions

In order to reference stage-two spin-correlation functions
(S2SC) to the incident lepton or parton beam [4], we gen-
eralize the derivation of S2SC functions given in [5]. When
more data are available for top quark decays, it should be a
reasonable further step to consider using the results of [18]
to incorporate A, polarimetry. A, polarimetry could be
used to make a complete measurement of the four moduli
and the three relative phases of the helicity amplitudes in
t — Wb and analogously in £ — W ~b. In this context,
next-to-leading order QCD, electroweak, and W-boson and
t-quark finite-width corrections require further theoretical
investigation [7-9]. If the magnitudes of the two A\, = 1/2
helicity amplitudes are as predicted by the standard model,
i.e. at factors of more than ~ % smaller than the two domi-
nant A, = —1/2 amplitudes, both detector and background
effects will be non-trivial at this level of sensitivity at a
hadron collider. Nevertheless, empirical consideration will
be warranted if by then, there is compelling evidence for
unusual top-quark physics.

In the BR-S2SC functions, we consider the decay se-
quence t; — Wb followed by W1+7—> [Ty, and the CP-
conjugate decay sequence ty — W5~ b followed by Wy~ —
I=v. In Figs.3 and 4, the spherical angles ¢ and ¢; de-
scribe the W7 T momentum in the “first stage” t; — W, Tb.
Similarly, in Fig. 5 spherical angles 6, and ¢, describe the
[T momentum in the “second stage” W;T — ITv when
there is first a boost from the (t)cy frame to the ¢; rest
frame, and then a second boost from the ¢; rest frame to
the W1 rest frame. If instead the boost to the Wi T rest
frame is directly from the (¢t)cy frame, one must account
for Wigner rotations. Formulas and details about these
Wigner rotations are given in [5]. Analogously, two pairs
of spherical angles 65", @5 and 6,, gZ;b specify the two stages
in the C P-conjugate sequential decay ¢ — W b followed
by W~ — [~ when the boost is from the £, rest frame.

Note that the charged leptons’ azimuthal angle ¢, in
the W1 ™ rest frame in Fig.5, and analogously ¢y in the
Wy~ rest frame, are referenced respectively by the {5 and ¢;
momentum directions. Instead of using the anti-top and top
quark momenta for this purpose, one can reference these
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0=0;+0 o

¢2__/\r/' A&/ 4

N t; rest frame

Fig. 4. The usual helicity angles 6;° and ¢; specify the W™
momentum, in the ¢ rest frame, with £2 moving in the negative z
direction. The polar angle 6" for the W» ™~ is defined analogously
in the f5 rest frame; c.f. Fig. 3. The azimuthal angles ¢1 and ¢2
are Lorentz invariant under boosts along the 2t axis. The sum
¢ = ¢1 + ¢2 is the angle between the ¢; and 3 decay planes

two azimuthal angles in terms of the opposite W¥-boson
momentum as in the formulas given in the introduction.
These azimuthal angles are then denoted without “tilde
accents”: ¢, in the Wi rest frame when the boost is from
the ¢1 rest frame, and ¢; in the W5~ rest frame when the
boost is from the ¢5 rest frame.

W,* rest frame

b

<
<

t, rest frame

Fig. 5. The two pairs of spherical angles 01 ¢, ¢1 and 84,04 specify
the two stages in the sequential decay t — W*b — (ITv)b when
the boost to the Wi rest frame is from the #; rest frame. In
the Wi T rest frame, to reference the 0° direction for ¢a the
axis x, lies in the f2 half-plane. In this figure, ¢1 of Fig.4 is
shown equal to zero for simplicity of illustration. Similarly, two
pairs of spherical angles 02", ¢o and y,,¢y specify the two stages
in the C'P-conjugate sequential decay ¢ — Wb followed by
W~ — I~ v when the boost is from the ¢5 rest frame
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As discussed in the caption to Fig.3, the momenta
for tq, W1+, and #5 lie in the same plane whether the
analysis is in the ¢; rest frame, in the £ rest frame, or in
the ¢t center-of-momentum frame. Therefore, in deriving
BR-S$2SC functions in the helicity formalism, the angle ¢,
in the W, T rest frame is theoretically clear and simple.
In general in the (tf)cy frame, the momenta for ¢, Wyt
and W5~ do not lie in the same plane. However, from the
empirical point of view, the W5~ momentum direction in
the Wi ™ rest frame will often be more precisely known,
and so these two azimuthal angles without “tilde accents”
will be more useful. From the standpoint of the helicity
formalism, in the final S2SC functions either ¢, or ¢,
can be used because it is only a matter of referencing the
zero direction for the azimuthal angle, i.e. it is an issue
concerning the specification of the Euler angles in the D
function for W+ — [Tv decay.

To simplify the notation, unlike in [5,18], in this paper
we do not use “tilde accents” on the polar angles 6, and
0. We also do not use “t” superscripts on ¢, o for they are
Lorentz invariant for each of the three frames considered
in Fig. 3. On the other hand, “t” superscripts on 91721" for
the t; and #; rest frames, are necessary to distinguish these
angles from 60 » which are defined in the (¢t)cm.

In the W1 rest frame, the matrix element for W; "

*v [or for Wit — jzd.] is

(Oas as M Ao 1 Aws) = DXL (@0,00,0) e (19)

L ) corrections
mw

since A\, = 7%,)\[#» =1

5, neglecting (

“ ”

[neglecting ( %) corrections]. Since the amplitude

in this matrix element is independent of the helicities, we
will suppress it in the following formulas since it only affects
the overall normalization. We will use below

+
Prixidw Ny, (t = WTb)

(1/2)% 1/2
Z D)\l//,l,) ¢ ,9§70)D§\;{M2(¢1,9§,0)

Ap=T1/2
X A, Ao) A" Ay, Ao), (20)
where = A+ — Ap and u/ = A+ — )\;,
Py W = 10) = DY, (60:6a.0)
x Dy | (5;,9@,0) C(21)

In the W5~ rest frame, analogous to (19) the matrix element
for Wo©o — 170 [Wa™ — jujal is

<0b7$b7>‘l*7>‘5‘15AW*> :Di;, —1 <€£b70b70) 57 (22)

«

and we suppress the “¢” factor in the following.
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2.1 Sequential-decay density matrices

The composite decay-density matrix for ¢; — Wb —
(ITv)bis

_ +
B = 3 Paan, (6 WD
Aw Ay

X Prw Al (WT — 1), (23)
where Ay, )\;,V = 0, +1 and the p density matrices are given
n (20) and (21).

The above composite decay-density matrix (23) can be
expressed as

R =R’* + R’", (24)
The A\, = —1/2 elements are
(K ),
eirtr_ RPE__
where
b
Ry
1 0} 0} 04
= 71"(07 0) cos? 31 sin?@, + I'(—1,—1)sin? - sin* 5
_\ﬁ [Tr(0,—1)cos p, — I1(0,—1)sin @g]
ot . o 0
X sin 6] sin 6, sin - (26)
R
1 .2 9% ) 9% 4 9
= —I(0,0)sin* = sin® @, + I'(—1, —1) cos? =+ sin* -
2 2 2
1 — —
+\ﬁ [T (0, —1) cos pg — I7(0, —1) sin g
ot . o 0
X sin 0] sin 6, sin 5 (27)
Re(rl" )
1 ot 2 1 ot o4 ba
= —I'(0,0)sinf] sin“ 0, — —I'(—1,—1)sinf; sin® —
4 2 2
1 — .~
+\ﬁ [Ir(0,—1)cos p, — I1(0,—1)sin @g]
;. . o 04
X cos 0] sin 6, sin 5 (28)
(x> )
1 — —
= 7 [ITr(0,—1)sinp, + I1(0,—1) cos @]
. . o 0
X sin f, sin® —, (29)

2

and rl_’f_ = (rlj_L+)*.
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For the subdominant by decay channel,

b i¢1 bR
br _ R R++ e r +—
RbR <e_i¢1rbR_+ o ) : (30)
b
R
1 t t
= 5FR(O,O) sin? % sin? 0, + I'*(1,1) cos? %1 cos® %
1 N —
- E [Fg(ov 1) COS Pq + FIR(Ov 1) sin @a]
x sin 0% sin 0, cos? ?a, (31)
R
1 6} 6} B4
= 5FR(O,O) cos? 51 sin? 6, + I'(1,1) sin? 51 cos® -
1 — .
+ﬁ [17(0,1) cos @, + I77(0,1) sin g |
x sin 0% sin 0, cos® -, (32)
Re (I'ZR;)
Ll R oot 2 L R ot aba
= fZF (0,0) sin 0] sin” 0, + §F (1,1) sin 6] cos >
1 — .
+ﬁ [17(0,1) cos @, + I77(0,1) sin g |
x cos 0} sin 0, cos? ?a, (33)
Im (ri{)
1 R . — R —
= 7 [IE(0,1) sin g, — I7(0, 1) cos @]
. 2 oa
X sin 0, cos - (34)

and rz_R_ = (rl’_R+) . The bpr decay channel’s polarized-

partial widths and W-boson—LT-interference widths are

I'(0,0) = |A(0,1/2)%, I'*(1,1) = |A(1,1/2)]?,

(35)
IE0,1) = IEF(1,0) = Re[A(0,1/2) A(1,1/2)]
= [A(0,1/2)[|A(1,1/2)| cos Br, (36)
I0,1) = —1¥(1,0) = Tm[A(0,1/2) A(1,1/2)*]
= —|A(0,1/2)]|A(1,1/2)| sin Bg. (37)

Note that the superscripts on these I'(Aw, Aw')’s always
denote the b or b helicity, whereas the subscripts denote
the real or imaginary part (e.g. alternatively for (36) use
IE(0,1)).
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The analogous composite decay-density matrix for the
C P-conjugate process t — W~b — (I"v)b is

R=R"+R (38)
with the dominant
—bgr EER++ ei¢2fBR+,
L (I P (39)
e"i2gPR_ . RV
-5 1— 64 — 03 0
Ri_ﬁ_ = ~T(0,0)sin® -2 sin? ), + I'(1,1) cos® -2 sin* 2
2 2 2 2
1 = B L
—l—% [I'r(0,1) cos gy, + I'1(0,1) sin @y |
. t . ) eb
x sin 6 sin 6 sin bR (40)
R
1— 04 = 05 4
= 57(0,0) cos® 52 sin? 0, + I'(1,1) sin? 52 sin® 2*’
1 = — = .
v [I'r(0,1) cos gy, + I'1(0,1) sin @y |
. t . ) eb
X sin 65 sin 6, sin -5 (41)
Re (fE‘i)
1— 1—
= —ZF(O, 0) sin 0% sin® 6, + 5F(1, 1) sin 04 sin* 921’
1 — ~ = L
_ﬁ [FR(O, 1) Cos Yp + FI(O, 1) Sln(pb]
t . .2 eb
X cos 05 sin 0y, sin X (42)
Im (fEP:)
1 = e = —
= -5 [I'r(0,1)singy, — I'1(0,1) cos @y
. ) eb
X sin 6y sin 5 (43)
and FE‘? = (f?‘})
For the subdominant by, decay channel,
bL RbLJrJr el¢2rbL
RY=| o7 & : (44)
et _, R T__
—
++



128

1 =L
+— | TR (0,
\/i R(

by
x sin 05 sin @), cos® —,
2

—1)cos@;—ff(0,—1)sin@}

—br,

R__

t

1 0 _
_ 5FL(O, 0) sin” 2 sin’ 6, + T (-1,-1)

0% 0y
222 cost 2

2

1 =L — =L L
-7 {I‘R(O, —1)cospp — I'; (0,—1) smcpb}

0
x sin 0% sin @), cos? 5177
ES

1 1— 0
= ZT7(0,0) sin 0, sin? 6, — §FL(—1, —1)sin 6% cos* 2

X CO8

4 2
_ﬁ {FR(O 1)cosgy — I} (0,—1)sin@}
x cos % sin 0, cos? %, (47)
n (1)
- f% [Tﬁ((},fl)sin%JrTIL(O,fl)cos@}
x sin 0 cos® %, (48)
and fEL, = (F§L+>*
70,0 = |B(0,~1/2) ",
TH(-1,-1) = |B(-1,-1/2)]%, (49)
Th(0,-1) :TL(—1 0)
Re[B(0, —1/2)B(-1,-1/2)"] (50)
= |B(0,~1/2)[|B(~1,~1/2)| cos 3,
(51)
T7(0,-1) = =T} (~1,0)
=Im[B(0,-1/2)B(-1,-1/2)*],  (52)
= —|B(0,~1/2)||B(~1,~1/2)|sin 3.
(53)

Sometimes in the derivation, we will denote r,_ =
F, +iH, and analogously ¥, _ = —F}, —iH}. As above, by,
and bgr superscripts on ry_ and on Fj, and H, denote the
Xp = —1/2,1/2 contributions, and analogously for .y _, Fy
and Hp.
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Yn

tt cm frame

Fig. 6. The derivation of the general “beam referenced stage-
two-spin-correlation” function begins in the “home” or starting
coordinate system (xp,yn, 2n) in the (tf)cm frame. ¢1 is mov-
ing in the positive zj direction, and 6y, ¢ specify the W™
momentum direction. The beam direction is specified by the
spherical angles @, ®p. Note that ®r = P — ¢1

2.2 Start of derivation of BR-S2SC functions

The general beam-referenced angular distribution in the
(tt)oMm is

I (93745}3;9§7¢1;9a7?¢:§957¢2;9b,¢%)

_ 2 : prod
p)\l/\z,)\ )\

)\1)\2)\ )\

xRy (= WTh— R,

(@B, ?5) (54)

(= W=b—...),

where the summations are over the ¢; and ?; helicities. The
composite decay-density matrices R/\M’l fort — W+th —

. and E/\Q/\; fort — W=b — ...
ceding subsection. This formula holds for any of the above
tt production channels and for either the lepton plus jets,
the dilepton plus jets, or the all-jets ¢ decay channels. The
derivation begins in the “home” or starting coordinate sys-
tem (zp,yn,2n) in the (¢t)cm frame. As shown in Figs. 6
and 7, the angles O, P p specify the direction of the inci-
dent beam, the e momentum, or in the case of pp — ttX,
the ¢ momentum arising from the incident p in the pp. The
t; momentum is chosen to lie along the positive z, axis.
The positive zj, direction is an arbitrary, fixed perpendic-
ular direction. Because the incident beam is assumed to be
unpolarized, there is no dependence on the associated ¢
angle after the observable azimuthal angles are specified
(see below). With respect to the normalization of the vari-
ous BR-S2SC functions, the ¢, integration is not explicitly
performed in this paper. With (54) there is an associated
differential counting rate

are given in the pre-

dN = I(Op,®p;...)d(cos Op)dPpd(cos 0 )de,
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2y

tt cm frame

- = Yn

Fig. 7. Supplement to the previous figure to show 602, ¢2 which
specify the W2~ momentum direction

x d(cos O, )dgad(cos 05 )dgad(cos B,)ddy,,  (55)
where, for full phase space, the cosine of each polar angle
ranges from —1 to 1, and each azimuthal angle ranges over
2m.

For tt production by ¢g, or eé — tf by initial unpolar-
ized particles, the associated production density matrix is
derived as in [4,5]. It is

prod

1 i =\)® * ’ ’
PridaNn, = <s2) ell ) BT (A1, A0)T ()\1’)\2>

1 ~ 2
x Z T(s1,52)| A (O)d}, (On),

(56)

where A = A\;—Xg, A = A} —X5, and s = 51 —s5. In the body
of this paper we concentrate on results for hadron colliders;
formulas for the case of e€ or uji production are given in
Appendix D. It is convenient to separate the contributions
into three parts, depending on the roles of the “helicity-
conserving” and ‘“helicity-flip” T'(A1, A\2) amplitudes for
g — ti1to production. Relative to the helicity-conserving
amplitudes, the helicity-flip amplitudes are (v/2m;/\/s).
We denote by a tilde accent the corresponding helicity-
conserving light-quark gg — ¢ annihilation amplitudes.
The values A1 2 = £1/2 of the arguments of T'(A1, \2) are
denoted by the signs of A1, A2, and likewise for T'(sy, s3).

2.2.1 Helicity-conserving contribution

The t1t5 helicity-conserving contribution production den-
sity matrix is

1 '2(,\/7,\ )qﬁ
prod - 1 1 1)9PB
Prxidan N, Ona =210y ! <52 €
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% T(A1, )T (Xl, —Xl)
1M~ 2
<1 [P duenids,©n
T )[R C)

where A = 2)\; and A" = 2)}. The angular distribution of
(57) has four different terms which can be labelled as I )/
due to the Kronecker §’s. Explicitly, these are

1 _
Iy = 152 T(+-)R R (58)

. 2 _ 2
X UT(—&——)‘ cos*(@p/2) + ‘T(——i—)‘ sin4(913/2)] )

I = S IT-HFR_Ryy (59)
X [‘f(+—)‘2sin4(93 /2) + ’T(—+)‘2c084(93 /2)] ,
Lo = S T(+=)T* (—H)e @t 5 (60)

452
x { T(+—)‘2 + ‘T(ﬂﬂ cos2(0/2) sin? (O /2),

1

I+ =12

T(—)T*(+—)e!CPatd)p_ 7, (61)

X UT(+—)‘2 + ‘T(—+)ﬂ cos?(@p/2)sin?(05/2),

where the starting angles ¢o and @5 have been replaced
by the angles ¢ = ¢1 + ¢2 and Pr = Pp — ¢1; see Figs. 6
and 7.

Two rotations are needed to recast the above expres-
sions in terms of the angles of the final (f)cy coordinate
system shown in Figs. 1 and 2.

Step 1. We rotate by 67 so that the new z axis Z is along
the W1Jr momentum, as shown in Figs. 8 and 9.

This replaces the @, @5 referencing of the beam direc-
tion by the final polar angle §, and an associated azimuthal
@y variable. Since this is simply a coordinate rotation,

d(cosby)dPw = d(cos Op)dPr. (62)
The Jacobian is 1, and cos 8, and @y have the usual range
for spherical coordinates. The formulas for making this
change of variables are

cosfy = cos By cosOp +sinb sinOp cosPr, (63)
sin 0, cos Py = —sinf; cos Op
+cos 6 sin Op cos P, (64)
sin @, sin @y = sin Op sin P, (65)
and
cos O = cos f; cos Oy — sin b sin b, cos Py . (66)
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- A
zZ=2z
0q
N
w,* Ae t | beam
e/
|
.’l |
|
| _
T y
A |
\
N |
\ |
] wo
X \ |

Fig. 8. In the derivation, the “barred” coordinate system
(%,9,%) in the (tf)om frame has W;T along the positive z
axis with the ¢; in the negative Z half-plane. A rotation by
01 has transformed the description from the previous “home
system” to the one in this “barred” coordinate system

In Fig. 9, the W, momentum is at angles @ and Ps.
Since O3 = m—1), @y can be replaced by the opening angle
1) between the W, and W, momenta. The opening angle
1 is simply related to the important angle ¢ = ¢1 + ¢o
between the ¢; and f5 decay planes:

cosY = — cos Oy
= — cos 0y cos O + sin 67 sin 05 cos ¢, (67)
sint = sin @y = (1 — cos® O5) /2. (68)

On the other hand, cos @5 and sin @, are auxiliary variables
that appear in the formulas in Appendix C for transforming
the initial beam referencing spherical angles @p, P of
Figs.6 and 7 to the final ones, 0,, ¢, of Figs.1 and 2.
We have

sin ¢ cos @5 = sin 01 cos O + cos 01 sin O3 cos ¢,
sin ¢ sin @5 = sin 0 sin ¢.
Step 2. We rotate by —®2 about Z = z so that the W,
momenta is in the positive Z plane, as shown in Figs. 1

and 2.
By this rotation,

(bq = @W + @27 (71)

so the Jacobian is 1, and ¢, has the full 2r range.
By these two steps, the above four helicity-conserving
contributions are expressed in terms of Figs. 1 and 2:

Iy +1__
1

T 162

x (1 + cos? O5)

Se{T+-)P R R+ |T(—+)P R Ry}
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— A
zZ = Z
+ AN
W, t,
A A

Fig. 9. Supplement to the previous figure, to show the speci-
fication of the W2~ by the spherical angles @2, ®>. Note that
1 + @2 = . A further rotation by minus @2 about the Z axis
transforms this “barred system” description” into that in the
“final coordinate system” shown in Figs.1 and 2

1 _ _
+ ST {ITEP R R — [T(—+)PR_Ry
8s
X cos Op, (72)
Iy 41,
1 i .
= 55 {n [FoFy + HyHy) + 7 [FuH, — Han}}
x sin? Op cos(2Pp + ¢)
1 (o _
—< 5 {K) [F,Fy + HoHy) — % [FoHy — Han]}
x sin® Op sin(20r + @), (73)
where
~ 2 ~ 2
So = |T+)| + [T (74)
~ 2 ~ 2
T, = [Tt+-)| - |7+, (75)
E+ik = T(+—)T*(—+). (76)

2.2.2 Mixed helicity-properties contribution

The mixed helicity-properties contribution of the ¢;¢s pro-
duction density matrix is in two parts: The first part is

prod
A1 A2iAL A,

1 2\ « [\ /
—)(5)\27)\1(5)\/27_)\/1 sz e T()\l,/\l)T /\1,—)\1
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1 [~ 2
X3 UT(JF—)] dy1(Or)d; 1 (On)

il aend ©). ()

where A" = 2)\/1.
As in the above subsection for the helicity-conserving

contribution, this mixed-helicity properties contribution
can be expressed as the sum of

1 _ . .
= - 8v/2 52 (77+ T +) R (Fy +iHy)
X (S, cos Op + T,) sin OpelPrtd) (78)
- 1 .
I_f: m (UJ + 1w )R——(Fb_le)
X (S84 cosOp — Ty) sin Ope (Prte) (79)
1 / >
IT:L‘ = —m (EJF + iw +) (Fa + iHa)R++
% (S, cos Op — T,)sin Oge 7, (80)
1 ' 53
A = (** +in *> F,—iH,))R__
v AR ( )
X (S, cos Op + T,) sin Ope' ™, (81)
where

The second part of the ¢1f mixed helicity-properties
part of the production density matrix is

prod
Az AL A,

1 —i * ! 4
- 5>\2ﬁ/\1‘5>\’2,,\’1 <52> e PMEET (A, —A)T <A1»)\1)

<1 [ damd©n)
+ T[] @) o) (56)

where A = 2. This mixed-helicity properties contribution
can be expressed as the sum of

1 /
B — (*+—i*+)R F, — iH,
= gme T =7 Ry (Fy —if)
X (S, cos Op + T,) sin Oge (Prtd) (87)
mB

1 /
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X (S, cos O — T,) sin Opel(Prtd) (88)
1 / —
mB— _— (g —ig ) (F,+iH,)R__
= A (77 1 ) ( )
% (S, cos Op + T,) sin Opge 7, (89)
1 . S
mE = W (w+ —iw +) (Fo —1Hqs) R4
x (8, cos Op — T,) sin O e, (90)
2.2.3 Helicity-flip contribution
The t1t9 helicity-flip production density matrix is
prod
p,\lxz;x’l,\;
]. ’ ’
— 5)\29\15)\/27)\/1 <82> T\, )T ()\1,)\1)
I 20 1
%7 | |7 dbi(©)dh ()
- 2
i B @nd en]. oy

This contribution can be expressed as the sum of

e+ 2

1 — —
= S {ITEHP R Ry +T(—)PR-R-_}

x sin? Op (92)
and
2 4 m2
1 _ 7
= 55 ({{ [F,F, — HyH,) +C [F,Hy + Han]}
X COS ¢

’

+{C [FuFy — HuHy) + C[FaHy + HoFy] psin )

X Sin2 @B y (93)

where ,
CHi¢C =T(HH)T*(—-). (94)
For gqg — tt, in the Jacob—Wick phase convention, the
associated helicity amplitudes are f(—h )= f(—, +) =y,
the helicity-conserving T'(+—) = T(—+) = ¢, and the
helicity-flip T(++) = T(——) = gm¢\/2/s.

3 Lepton plus jets channel:
Ay = —1/2, A = +1/2 dominance

From the perspective of specific helicity-amplitude tests,
one can use the above results to investigate various BR-
S2SC functions for the lepton plus jets channel. In this
paper, we are interested in tests for the relative sign of, or
for measurement of a possible non-trivial phase between the
Ap = —1/2 helicity amplitudes for ¢t — WTb. We assume
that the A\, = —1/2 and A\j = 1/2 contributions dominate.
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+ + 1 B
31t — Wi'b— (I"'v)b x {QF(O,O) sin?@, — I'(—1, —1) sin* 2}
For the case t; — W;tb — (I*v)b, with W, decaying into
hadronic jets, we separate the intensity contributions into r(o 0) - I'(1, 1)]
two parts: “signal terms” I|s;s which depend on I'g(0,—1) ~ ~

« » T : (I+— + I—-‘r) (101)

and I7(0,—1), and “background terms” I|, which depend sig
on I'(0,0) and I"'(—1, —1). We use a tilde accent on I, ... —

. . . . a
sin? O sin 0 sin , sin? =~

to denote the integration over the 6, 51, variables. This == 61/252
integration gives
< [T(0,0) — T(1, 1)]

1 2n —Tg
,/_1 d(cosfy) /0 o Ry X {COS(?@R + @) cos 6}
) 6%
4; { (0,0) sin® 5 2 +T°(1,1) cos® 22} , (95) {FR(O —1) cos ¢q — I7(0, 71)8111(;5@}
1 2n - in(2®
/ d(cos 91,)/ dos R +sin(2@r + ¢)
~1 0

X {FR(O, -1) sincza + I7(0, —1) cos ia}}

t

_4rm 2 05 = .o 0%
I, 1 =
3 { (0, 0) cos® 5 T (1,1)sin 2|’ (96) For the mixed-helicity contribution, the terms with

primed coefficients [see (82)—(85)] all vanish. We collect

1 2 _
/ d(cos ) i d% Fé’R the other mixed-helicity contributions in real sums:
—1 0
2 _ Tm(w*W*)I
- 3” sin 64 [1°(0,0) — T(1,1)] . (97) 0
4
_ _ mgtm .
The integration over H.® vanishes. - 82\[ sin O cos O cos P sin 0] cos 0 (102)
We find for the helicity-conserving contribution ) ;
. . - -2 o o o -4 i
(1++ + L,) ’0 (98) X { S 1(0,0)sin? 0, — (1, ~1)sin’ = }
1 x [I'(0,0) — I'(1,1)],
= g (1—|—cos293){1"(0,0)sin29a r )
1252 2 Sl )
X {T(O, 0)(1 + cos 0% cos 6%) o8
= M sin ©p cos O cos 05 sin 0, sin* ba (103)
+1'(1,1)(1 — cos 0} cos 95)]  3s2y/s B B 2 ¢ 2
0 - _ —
+I(=1, —1) sin® - X {00501 { (0, —1) cos ¢q — I7(0,—1) sm¢a}
— X cos PR
X {F(O, 0)(1 — cos 6% cos 65) _ _
+ {FR(O, —1)sin ¢, + I7(0,—1) cos ¢a} sin@R}
- gt _
+I°(1,1)(1 4 cos 6} cos@Q)}}, « [T(0,0) — T(1,1)] ,
(IN_H_ + f__) (99) (@ +7t)
sig 0
= mg* (1 + cos? Op) sin 0% cos 0% sin §, sin? ba = — Ty sin ©p cos Op cos(Pr + @)
6\/552 B 1 2 a ) 352\/§ B B R
X {—FR(O,—l) cosaa—i—FI(O,—l) sin%a} X cos 0] sin 05 (104)
1 4 04
x [I'(0,0) — I'(1,1)], X {Zr(o,o) sin® @, — I'(—1, —1) sin* 2}
(T + 1)), % [T(0,0) = T(1,1)],
4

Fm (@ 7t
=L sin’ Op cos(20n + @) sindisindy  (100) T (& +7)

sig
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- \/575947”7:
 3s%/s

sin ©p cos Op cos(Pr + @)

32%, - W, b— (I"0)b

For the C'P-conjugate process to — Wy b — (I~)b, with
Wl+ decaying into hadronic jets, we similarly separate the

x sin 0% sin A% sin 6, sin? - (105) = _
2 contributions: “signal terms” I|; depending on I'r(0,1)
% {FR(O, ~1) cos aa — 17(0,—1) sin %{L} and I'1(0,1), and “background terms” I|o de}vpending on
1'(0,0) and I'(1,1). The integration over 0,, ¢, gives
x [I'(0,0) — I'(1,1)] . 1 om
/ d(cosf,) / dg, R, (110)
—1 0
The helicity-flip contributions are 47: ot ot
o1 1 w24
3 { (0,0) cos? 5 +I'(—1,—1)sin 2],
Im2 Im2 Tcg4m% s 28 106 1 n
(7r2+ )‘0 =53 S Op (106) / d(cosOa)/ A RY:. (111)
~1 0
1
x ¢ =1'(0,0)sin® 6, _ 4 ot o
{2 (0,0)sin T { (0,0)sin? X + I'(—1, —1) cos? 1] ,
3 2 2
X [T(O, 0)(1 — cos 0% cos 65) 1 o
/ d(cos ) / de, For
+ I'(1,1)(1 + cos 6} cos0£)} -t 0
2n .
.6, = 5 sin6{[0(0,0) - (-1, -1)]. (112)
+I'(—1,—1)sin* —
- The integration over H’: vanishes.
X [F (0,0)(1 + cos 0} cos 0%) We find for the helicity-conserving contribution,
+I'(1,1)(1 — cos b} COS@%)}}, (I+++I,,)‘O = 12952 (1 + cos®Op) (113)
1_
(ImQ JrImz) {F(0,0) sin? 6,
sig 2
2ngtm? I(0,0)(1 0% cos 6
= \[L;”t sin? O sin 0} cos O5 sin 4, sin? = (107) XIL'(0, 0)(1 + cos 6 cos )
3s +I(=1,—1)(1 — cos 6} cos 65)]
x ¢ Ir(0,—1 cos~a—F 0,—1 sin~a — 0
{00, ~1)cos o — 11(0, ~1)sin & | Pt
0,0 1,1
x (10,0 =1, 1], x[I'(0,0)(1 — cos 0% cos 65)
(fmz + fm2>‘ = mg'mg sin? O cos ¢ sin 0" sin 0
tm e T 33 B ! 2 +I(=1,—=1)(1 + cos 6} cos@é)]},
(108)
1 0 Too+T 114
X {—2F(0,0) sin?6, + I'(—1,—1)sin’ 2“} ( ++ ) sig (114)
4 0
x [T(0,0) — T(1,1)] , - _ 61\5/9532 (1 + cos® ©p) cos 6 sin A sin 6, sin? Eb
~ ~ 2natm? _ ~ o~
(I_TE + IT_,%) e = % sin? © g sin 0 sin 6, sin’ % X {FR(O, 1) cos ¢p + I'1(0,1) smqbb}
I -I'(-1,-1
X {cosqﬁcosﬁ’i (109) N x| (?’O) (=1,-1)},
N e
x {—FR(O,—l)c0s¢a+F1(0,—1)sin¢a} 0
4
g~ .2 ot i ot
~ ~ = — G 2¢ 0 0 115
+sing {FR(O, 1) sina + 11(0, —1) cos ¢>a}} 152 S0 OB 082k + ) sin b sin 6, (115)
_ 1— 0
x [I'(0,0) — I'(1,1)]. X {2 (0,0)sin® @, — I'(1,1) sin* 2”}
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x[1'(0,0) = I'(=1, =1)],
(T +1-4)|
sig
4
— 6\/%52 sin? Opsin 9§ sin 6, sin? @
x[I'(0,0) — I'(—1,—1)] (116)
X{COS(Q@R + ¢) cos 04

x {TR(O, 1) cos ¢y + T'1(0, 1) sin 5,,}

—sin(2@g + ¢) {TR(O, 1) sin g — I'1(0,1) cos 55,}}.

The mixed-helicity contributions are

~m(@t4+77)
0
ngtm; | ot t
= 3525 sin O cos Op cos P sin 67 cos b5 (117)
x{l I'(0,0)sin® 6, — I'(1,1)sin* H;}
x[I(0,0) — I'(—=1,-1)],
~m(@t4+77)
sig
= \gﬂ;g\[mt sin ©®p cos Op cos Pgr
. . t . ) 9})
x sin 67 sin 65 sin Gy, sin > (118)
x {TR(O, 1) cos &y + T'1(0, 1) sin %}
x[I'(0,0) — I'(—1,—-1)],
:m(57+ﬁ+)
1 (119)
0
4
= ggz\[ sin ©p cos Op cos(Pg + ¢) cos OL sin O,
1— 4 eb
X F(O 0)sin? @, — T'(1,1) sin >
x[I'(0,0) — I'(—1, —-1)],
~m Uf-i-ﬁ*
= )
sig
_V2rg'm . .o Oy
= 25 2\[ ! $in ©p cos O cos 6} sin 6, sin? > (120)

X {cos 6% {TR(O, 1) cos ¢y + I'1(0,1) sin 5;,}
x cos(Pr + @)

+ {—TR(O, 1) sin ab + I'1(0,1) cos 5;,} sin(®r + (;5)}

x[I(0,0) — I'(—1,—1)].

The helicity-flip contributions are

~m2 ~m2
(i)

0
4,2
ngtm; .
_ 383 t SlIl2 QB (121)
1— . 2
X 5F(O,O) sin” 0y,
x[I'(0,0)(1 — cos 0% cos 0%)
+I(—1,—1)(1 + cos 6} cos 85)]
+I'(1,1) sin* 9(,
x['(0,0)(1 + cos 0% cos 05)
+I(=1,—=1)(1 — cos @} cos 9;)]},
~m?2 ~m2
(I++ + I——)
sig
Sratm?2 0
_ % sin? O cos 0 sin 0 sin , sin” - (122)
x {TR(O, 1) cos ¢y, + I'1(0, 1) sin gb}
x[I(0,0) — I'(—1,-1)],
~m2 ~m?2
<I +1_ +>
0
ngtmi .,
= 3 sin® O cos ¢ sin 0! sin O} (123)
s
1— .92 il 4 eb
—51(0,0)sin® 0, + (1, 1) sin* =
x[I'(0,0) — I'(—1,-1)],
~m2 ~m?2
(I +1_ )
sig
Sratm?2 0
I ot 0 sin 0 sindysin? 2 (124)

X {cos ¢ cos 05 {TR(O, 1) cos ¢y + I'1(0,1) sin qNSb}

—sin¢ {TR(O, 1) sin g, — I'1(0,1) cos (Eb}}
x[['(0,0) — I'(—=1,-1)].

3.3 I'(Aw, )\w’) tests versus angular dependence

In summary, with beam referencing, for the t; — W1+ b—
(I*v)b case there are six “background terms” depending on
I'(0,0) and I'(—1, —1), and also six “signal terms” depend-
ing on I'r 1(0, —1). As a consequence of Lorentz invariance,
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there are associated kinematic factors with a simple angu-
lar dependence which can be used to isolate and measure
these four I''s.

(i) 6, polar-angle dependence:

The coefficients of I'(0,0) /

vary relatively as the W decay d!
sity ratios

1 -2 . 40a ]- . . 200.
2sm GQ/[sm 2]/{\/§sm€asm 5

=2(1+cosb,) /[1 — cosb,]
/{\/2 + cos8,)(1 —cosb,) = \/isint?a}.

(-1, —1)/1}“(0, 1)

o (B0 )-squared-inten-

(125)

(ii) ¢, azimuthal-angle dependence in the “signal terms” [or
the ¢, dependence if t5 is used to specify the 0° direction]:

The coefficients of I (0, —1)/1}(07 —1) vary as

COS Pg / sin ¢

in each of the signal terms. However, in three terms there
are also I'g 1(0, —1)’s with the opposite association of these
cos (ba, sin ¢, factors. This opposite association occurs in
(D + 1), T T )|, and (172 4 172y, along
with a dlﬁerent @ and ¢ dependence which might be useful
empirically in separation from the terms with the normal
¢q association.

To reduce the number of angles, we integrate out the
two beam referencing angles, and also ¢:

_ 2n 1 2n _
Fi E/ dgb/ d(cos@B)/ dPRrI;.
0 -1 0

This yields four-angle S2SC functions.
In terms of K defined in (17), the four-angle distribution

{01, 05, 0a, da} is

()
S

T°(0,0)sin?4,

(126)

(127)

87'5394
952

{1
X —
2

X {T(O, 0)(1+ K cos ! cos 0%)

Flo = (128)

+I'(1,1)(1 — K cos 6% cos 6%)
- 4 ba
+I(—1,—-1)sin* —
x| T(0,0)(1 — K cos 6} cos 05)
+I'(1,1)(1 4 K cos 0! cos 05)] },
-ﬁsig

8v/2m3g* 2m7 0
=— v2n'y (1 + ) cos 05 K sin 0} sin ,, sin* Ea
s

(129)

952

135

x {I'r(0,—1) cos ¢, —
x [I'(0,0) — I'(1,1)] .

I7(0,—1) sin ¢, }

The terms in these expressions arise from the helicity-
conserving (I 4+ I__), and from the helicity-flip (I_Tf_ +

I™2). In each case there are contributions to both back-
ground and signal parts.

Without the integration over ¢, there is a contribution to
both the background and signal parts from the helicity-flip
(I72? 4+ I™2) of (108) and (109). This additional contribu-
tion has both the normal and opposite ¢, dependence as
discussed above in (ii). It will be fundamentally significant
to empirically demonstrate in both cos ¢ and sin ¢ the pres-
ence of this contribution to the spin correlation because
it arises completely from the combination of t;-quark L—
R interference and to-antiquark L-R interference [see (93)
and (108-109)]. Without the ¢ dependence, in the above
four-angle function (128) and (129) there is no contribu-
tion from the off-diagonal elements of the A\, = —1/2 and
Ap = 1/2 sequential decay matrices (25) and (39).

For the C P-conjugate case in terms of {05, 6%, 0y, ¢},
the analogous four-angle distributions are

(e 2)
S

1_—
X {2]“(0, 0) sin® 4,

= 8nd gt
f =
o 952

x[(0,0)(1 + K cos 6% cos 05)

+I(—1,-1)(1 — K cos 6} cos 65)]
+71(1,1)sin* L
x[1'(0,0)(1 — K cos 0} cos 05)

+I'(—1,—1)(1 + K cos 8} cos 05)]},

?‘sig

3 4 2

_ 8v/2m g 14 2m
952

. . 2 O
- ) cos 0% K sin 0% sin ), sin® 0}
s

(130)

x {I'r(0,1) cos ¢y + I'1(0,1) sin ¢y }
«[I'(0,0) = I'(=1, —1)].

The still simpler three-angle distributions, which were
discussed in the introduction section, then follow if the

cos 0% integration is also performed JF;= f_ll d(cos 1) F;:
16m3g* <1 n 2mf>
s

Flo= 9s2
) 4 0(1
I'(0,0)sin“ 6, + I'(—1,—1) sin > }

1
x {2
x [I(0,0) + I'(1,1)],

4 4
g <1—2 ) 502 sin 6, smza—a
f 2

(131)

a

sig — T 92
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x {I'r(0,—1) cos ¢, — I1(0,—1)sin ¢, }
x [T(0,0) — T(1,1)] . (132)

The analogous three-angle S2SC function for the C'P-
conjugate to — W5 b — (I"v)b is

— 16m3g* 2m?
Flo= 952 <1 * st>
1— ) =1 .4 eb
X 5]“(0,0) sin® 6, + I'(1,1) sin 5
X[F(an) +F(_17_1)]a (133)
— 8migt 2m? . 1 . o 6
Flgg = — 052 1- 5 ) cos 91\—6 sin 0 sin )

x {T'r(0,1) cos ¢y + I'1(0,1) sin ¢y }

x[I'(0,0) — I'(~1, —1)]. (134)

4 Discussion

In the above derivation of general BR-S2SC functions, in
part for greater generality, we include beam referencing. At
hadron colliders, beam referencing may be useful in some
applications. In the case of e€ production, it would probably
be useful in investigating possible anomalous initial-state-
with-final-state couplings in the ¢, production process.
However, the simple three-angle formulas reported in the
introduction section do not make use of beam referenc-
ing. Given the conceptual simplicity of the helicity for-
mulation for ¢g, or ee — tt — (W+b)(W~b) — ..., such
non-beam-referenced functions are ideal for tests of the
moduli and phases of the four + — Wb helicity ampli-
tudes. While usage of direct boosts from the (¢t)cy frame
to the W or W~ rest frames might be useful for some
purposes, from the perspective of this BR-S2SC helicity
formulation, such boosts will be an unnecessary compli-
cation. The boosts introduce additional Wigner rotations
which obscure the overall simplicity of the helicity formula-
tion which distinctly separates the different physics stages
of the tf production and decay sequences.

In this paper we separate the A\, = —1/2 contribu-
tions from the A, = 1/2 contributions. To display the
W-boson polarization and longitudinal-transverse inter-
ference effects, we introduce a transparent I'* (A, )\;,V)
notation. Appendix B relates this notation to the helicity
parameters notation used in [5, 15, 16, 18]. At the present
time, the A\, = —1/2 amplitudes do indeed appear to dom-
inate in the ¢ — Wb decay mode and so the present
paper’s F’\b(/\W,)\/W) notation is very appropriate. At a
later date, in higher precision experiments where effects
from all four of the decay amplitudes must be carefully
considered, the helicity parameters notation might be use-
ful. Tt is more analogous to the notation of the Michel-
parameters which continue to be used in muon decay data
analysis. On the other hand, in the context of a character-
ization of fundamental “particle properties”, the present
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I (\ywy, )\/W) notation is a simple way to precisely specify
polarized-partial width measurements, including W-boson
longitudinal-transverse interference. Since the t — WTb
decay channel will first be investigated at hadron collid-
ers, such measurements will be of channel polarized-partial
width branching ratios

B (Aw, Aw) = I (w, Ay ) /T (8 — WD), (135)
where I'(t — Wb) is the partial width for ¢ — W*b.
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Appendix A: kinematic formulas

In the (tf)cm frame, the angles ;o of the Wi, Wy and
their respective energies F o are related by

Qﬁpw COS 91’2 = 2ﬁ0E1,2 — mtz — m%% (Al)

where t-energy and magnitude of t-momentum are ﬁo =
V5/2, P =
rest frame, t5 rest frame, respectively

—/5(m? + miy) + 4E1,2m?]

(m? — i)/ — dm?

B3 —m3, and p, = E?, —m¥,. In the t;

0?2 = arccos [

0<6,<m, (A.2)
which give the kinematic limits
Emax , min _ \/g(m% + mI2/V) \/g(m% B mI%V)
1.2 4m? 4m?
4 2 1/2
x {1 L } . (A.3)
s

The angles 0; > are determined uniquely from cos 6 » and
sin 0172 of

p1,2costy o = ’Y(Pﬁ,z cos 95,2 +ﬂEf,2)7 (A.4)

pr2sinfy o = pf ,sin6] ,, (A.5)
where pl o = (m7—miy)/2my, Ef , = (pf 2)? + miy, and

v = /5/(2my), B are for the relativistic boosts between
the (tt)om frame and the tq, to rest frames. A check is
B9 =(E] 5 + 0p] 5 cos b 5).

From 6, 2 there is a unique relation between cosy and
cos @,

(A.6)

cos Y = — cos 01 cos By + sin By sin O cos ¢,

or equivalently from 6} ,

gt G pt _
sin ] sin 05 cos ¢ =
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X {plpz cos 1 (A7)

N (\/§E1 —m? —m%[,) (\/§E2 —m? —m%v) }

s —4m?

The sign of the quantity sin ¢ is the same as the sign
of the auxiliary variable sin @,.

Appendix ',3: translation between
I'(Aw, Aw )’s notation
and helicity parameter’s one of [5, 15, 16, 18]

For the ¢t — Wb helicity amplitudes, in terms of the he-
licity parameters of [5,15,16,18], the A\, = —1/2 polarized-
partial widths and W-boson—LT-interference widths are

F0.0)= 7 {1+£+C+0), (B.1)
[(-1,-1) = g {l4é—C—o), (B.2)
(0, -1) =3 - +w} =T, (B.3)
B0 =50 +&)=-Tom, (B

where the L superscript is suppressed, and I" is the par-
tial width for ¢ — WTbh. For £ — Wb, the analogous
formulas A\; = 1/2 polarized-partial widths and TW-boson-
LT-interference widths are obtained by replacing —1 — +1
in the I'’s on the left-hand sides, and then barring all of
the I"’s on both sides and also barring all the helicity pa-
rameters.

The important R suppression factor in (18) was denoted
as Sy in these references.

Appendix C: Op, ¢R to 0,, ¢, formulas

The transformation formulas to express the beam spherical
angles Op, P in terms of 0,, ¢, involve the (tt)cm W-
boson angles 61, 05, and also the auxiliary variables sin &5
and cos®Ps of (69) and (70) [see Figs.8 and 9]. In the
helicity-conserving contributions

cosOp =P + Q1 (C.1)
Py = cos b1 cos bty — cos ¢ sin by sin 0, cos Do,

Q1 = —sin ¢4 sin 8 sin §; sin Py,

(14 cos®Op) =Py + Qo, (C.2)

1
Py = 1 + cos? 0, cos? 0, + 3 sin® 6, sin? 04
— €08 g sin 20, cos 0 sin 01 cos P

1
+ 3 cos 2¢ sin? 67 sin? 04 cos 295,
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Qp = — sin @y sin 26, cos 0, sin 0 sin P,
+75 sin 264 sin? 6 sin? 4, sin 2,
sin2 OB COS(QGI)R + (b) =P, + Qm (03)
P.=Ccos¢+S sing, Q. =Scos¢g—C sing,
sin? Op sin(28p + ¢) = Prr + Qwr, (C.4)

P =C cos ¢+ Ssing, Qw = -S cos ¢ + Csin ¢,
where
L 2
C= 5 sin 01(3cos” 0, — 1)
+ cos ¢, sin 20, cos 61 sin 6; cos P
1
+5 cos 26, sin? 0, [1 + cos? 0] cos 26,
S = sin ¢4 sin 26, cos 05 sin 6 sin P,
1
+5 sin 2¢, sin? 0,[1 + cos? 6] sin 20,
¢ = sin ¢qsin 20, sin 01 cos P
+sin 2¢, sin? 04 cos 01 cos 295,
S = cos ¢q sin 20, sin 01 sin @
+cos2¢, sin? 04 cos 01 sin 29,.

For the mixed-helicity contributions, we first define
functions of the final angles:

Cl" = sin ¢y sin B, cos Po, Si" = cos ¢, sin b, sin Py,

Cy" = cos O, sin B + cos ¢q sin O, cos O cos Pa,

83" = sin ¢ sin O, cos 01 sin Py,
1
C3t = 3 sin ¢4 sin 26, cos 0 cos P,
1. 9,
—5 sin 2¢4 sin® 0, sin 6, cos 2Py,
w1 . .
St = 5 COs ¢4 sin 26, cos 01 sin P
1 Lo, . .
— 3 cos 2¢, sin” 0, sin By sin 25,
m 1 : 2
Clt = 7 5in 2601(3cos” 0, — 1)
1 .
+ 5 oS g sin 20, cos 20, cos P
1 . 9 .
~1 oS 2¢4 sin” 0, sin 260; cos 2P,

1
St = 3 sin ¢ sin 26, cos 26, sin Py

1
-1 sin 2¢,, sin” 0, sin 26, sin 2&,.
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Using these definitions,
sin®rsinO@p = C{" — ST,
cosPrsinOp = C3" + 83",
sin®prsinO@pcosOp = C§" — S5,
cosPrsinOp cosOp = C* + S (C.6)
and
sin(@r + ¢)sinOp = PI* + O,
P = Ci" cos ¢ + S5 sin ¢,
O = —S7" cos ¢ + Cy" sin ¢,
cos(Pr + ¢)sinOp = PI* + QF,
Pyt = C3 cos ¢ + S7" sin ¢,
Q' = S cos p — CT" sin ¢,
sin(®r + ¢)sin Op cos Op = PY* + QF,
Pt = C3" cos ¢ + Sy sin ¢,
Q' = —83" cos ¢ + C}" sin ¢,
cos(Pr + ¢)sinOp cos Op = PJ* + Q) (C.7)
Pyt = CJ" cos ¢ + S5 sin ¢,
Q' = 8y cos g — C3" sin ¢.
For the “helicity-flip” contributions,
sin?@p =2 — Py — Q.

Appendix D: ee — tt production

In ee — tt production, as the center-of-mass energy in-
creases, the helicity-flip amplitudes T'(A1, A2) of (56) will
be suppressed relative to the helicity-conserving ones by
the factor of v/2m;/(1/s). With respect to more accurate
and more precise measurements, this could be a useful vari-
able dependence. We neglect m./+/s corrections. For the
case of tt production via v*, the formulas in the text apply
with the replacement g2 — %82 with e = v4na. For Z*

production, T(—+) = ve 4 @, and T(+—) = v, — a, with
ve = e(—1 4 4sin? Oy ) /(4 sin Oy cos O )

and
a. = —e/(4sin Oy cos Oy ),
and
T(—) =v+a (2]5/\/§> )
T(+-) = v —a (Qﬁ/\/g> .
T(++) = T(——) = V2umi/\/3),
with

v, = e(3 — 8sin? By ) /(12 sin Oy cos Oy )

and a; = e/(4sinfw cosby) with P = magnitude of -
momentum in (¢£)cn, and 1/s — 1/(s — Mz?).
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